Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38202816

RESUMO

Heterostructured materials show great potential to enhance the specific capacity, rate performance and cycling lifespan of lithium-ion batteries owing to their unique interfaces, robust architectures, and synergistic effects. Herein, a polypyrrole (PPy)-coated nanotube-like Mo3S4/CoMo2S4 heterostructure is prepared by the hydrothermal and subsequent in situ polymerization methods. The well-designed nanotube-like structure is beneficial to relieve the serious volume changes and facilitate the infiltration of electrolytes during the charge/discharge process. The Mo3S4/CoMo2S4 heterostructure could effectively enhance the electrical conductivity and Li+ transport kinetics owing to the refined energy band structure and the internal electric field at the heterostructure interface. Moreover, the conductive PPy-coated layer could inhibit the obvious volume expansion like a firm armor and further avoid the pulverization of the active material and aggregation of generated products. Benefiting from the synergistic effects of the well-designed heterostructure and PPy-coated nanotube-like architecture, the prepared Mo3S4/CoMo2S4 heterostructure delivers high reversible capacity (1251.3 mAh g-1 at 300 mA g-1), superior rate performance (340.3 mAh g-1 at 5.0 A g-1) and excellent cycling lifespan (744.1 mAh g-1 after 600 cycles at a current density of 2.0 A g-1). Such a design concept provides a promising strategy towards heterostructure materials to enhance their lithium storage performances and boost their practical applications.

2.
Colloids Surf B Biointerfaces ; 136: 375-82, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26433644

RESUMO

A novel water-insoluble sericin/ß-cyclodextrin/poly (vinyl alcohol) composite nanofiber adsorbent was prepared by electrospinning and followed by thermal crosslinking for removal of cationic dye methylene blue from aqueous solution. Fourier transform infrared spectroscopy and solubility experiments confirmed that sericin and ß-cyclodextrin were incorporated into the nanofibers and the crosslinking reaction occurred successfully. Kinetics, isotherms and thermodynamics analysis were studied for adsorption of methylene blue. The adsorption process is better fitted with the pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacities are 187.97, 229.89, and 261.10mg/g at the temperatures 293, 313 and 333 K, respectively. Thermodynamic parameters showed that methylene blue adsorption was endothermic and spontaneous. In addition, the fiber membrane adsorbent could be easily separated from dye solution and showed high recyclable removal efficiency. All these results suggest that crosslinked sericin/ß-cyclodextrin/poly(vinyl alcohol) composite nanofibers could be potential recyclable adsorbents in dye wastewater treatment.


Assuntos
Azul de Metileno/química , Nanofibras , Álcool de Polivinil/química , Sericinas/química , beta-Ciclodextrinas/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Solubilidade , Termodinâmica , Água/química
3.
J Colloid Interface Sci ; 437: 252-258, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25441358

RESUMO

We demonstrated a new metal oxides based chemiresistor (MOC), which exhibits fast response/recovery behavior, large sensitivity, and good selectivity to ethanol, enabled by Sr-doped SnO2 nanofibers via simple electrospinning and followed by calcination. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectra (XPS) were carefully used to characterize their morphology, structure, and composition. The ethanol sensing performances based on Sr-doped SnO2 nanofibers were investigated. Comparing with the pristine SnO2 nanofibers, enhanced ethanol sensing performances (more rapid response/recovery behavior and larger response values) have been achieved owing to the basic SnO2 surface caused by Sr-doping, whereas the acetone sensing performances have been weakened. Thus, good discriminative ability to ethanol from acetone has been realized. Additionally, Sr-doped SnO2 nanofibers also exhibit good selectivity.


Assuntos
Acetona/química , Etanol/química , Nanofibras/química , Estrôncio/química , Compostos de Estanho/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...